
High-performance Web-based Visualizations for
Streaming Data

Eric Whitmire
emwhit@cs.washington.edu

1 INTRODUCTION
Researchers and engineers who design sensor systems of-
ten need to visualize real-time signals that update in mi-
croseconds. Many times, these visualizations tasks support
exploratory signal processing. An engineer might tweak a
filter to remove noise in a signal or change a threshold to
support event detection. In these scenarios,

Developers of such sensing systems often work in C/C++,
MATLAB, and Python to facilitate signal processing. De-
veloping real-time visualizations in these platforms is time-
consuming, tedious, and often results in poorly optimized
rendering that is tightly coupled to a particular use case. As
a result, it can be difficult rapidly explore different signals
and intermediate processing steps. In contrast, web-based
visualization frameworks have seen significant attention and
advancement in recent years. Browsers have become opti-
mized for graphics-intensive tasks and offer a convenient
platform for designing dashboards.
The goal of this project is to design a lightweight web-

based visualization library to support high-performance vi-
sualizations of high-speed streaming data. This work aims
to bring smooth, 60Hz rendering to signal processing tasks
without adding significant compute overhead. Specifically,
the contributions of this work are:
(1) A streaming line-plot component that supports seman-

tic zoom and hundreds of signals.
(2) A streaming spectrogram component that supports

geometric zoom and over 16M points.
(3) A set of supporting components that facilitate integra-

tion with existing tools
(4) A brief performance analysis of the rendering perfor-

mance

2 RELATEDWORK
At the hobbyist level, many users rely on Arduino [1] and
Processing [6] for visualization. This supports rich visualiza-
tions, but there is tight coupling between the visualization
and the signal processing, often in the form of a loop function
which contains all functionality.

Python is commonly used for many real-time processing
tasks. Matplotlib [4] is a widely used visualization package,
but it is optimized for publication-quality graphics. Tools
like PyRealtime [9] attempt to enable performant rendering
for streaming data using Matplotlib. Bokeh [2] is a Python

library that supports web-based visualization, suitable for
use with high-speed data. While this is a promising option
for Python users, this work targets does not restrict use to a
particular language.
In the web space, tools like Vega [8] and Vega-lite [7]

support declarative specification of visualizations, which is
ideal for the "fire-and-forget" type of functionality desired.
These tools, while they support dynamic datasets, are not
optimized for high-speed data and rendering. Plotly.js [5]
is another commonly used web-visualization framework,
but it is also struggles with high-speed data. Cubism.js [3]
is a D3 plugin for time series visualization that supports
incremental render. Though it uses a similar implementation,
it is designed for slowly (several hertz) updating horizon
plots and does not scale for high-speed signal processing
tasks.

3 METHODS
A high-level diagram of the components of this system are
shown in Figure 1. Scrolling line plots and spectrograms
are two commonly used visualizations for real-time signal
processing. While support for other visualizations would be
useful, this project focuses on these two plots as they are both
challenging and ubiquitous. In general, each visualization
uses two superimposed containers—an svg container for
elements like axes and labels and a canvas container for
the actual plot. Each plot has separate update and render
functions. A call to update supplies new data that is buffered
until render is called and the plot is updated. This distinction
is important, as it allows data updates at rates faster than can
be rendered. Each plot also supports zoom by brushing as
well as customizable axes. All axes are set up and drawn using
standard d3 functions. The specific rendering techniques
and zoom functionality are customized for each plot and are
detailed in the following sections.

Streaming Line Plots
A depiction of the rendering process is shown in Figure 2
(left). The line plot is implemented using a single canvas
element, sized to match the requested dimensions at screen
resolution. Initialization of a line plot requires specifying the
number of series/lines and the width/history of the plot in
samples. When the plot is rendered, the canvas pixels are
shifted left by a number of pixels corresponding to the width

CSE 512: Data Visualization, Spring 2019, University of Washington Whitmire

Spectrogram

Line Plot

App

Python Server

WebAudio Source

Supporting Components Core Components

WebUSB Source

Websocket Source

SVG

Custom
rendering

Canvas

Figure 1: High-level architecture of primary system components

Line Plot Implementation Spectrogram Implementation
1. Buffer incoming data

Geometric zoom
Canvases are stretched

1. Buffer incoming data

2. Copy/paste
image to the left

3. Extend lines

Canvas A Canvas ACanvas B Canvas B

Clipping Mask

2. Slide left

Stale Visible

3. Draw new
columns

Stale

Semantic zoom
Lines are redrawn

4. Swap canvases

Figure 2: Illustration of implementation of both the line plots and spectrograms

of the buffered data, computing by scaling the number of new
data points by the canvas width and history length. The shift
operation was carefully chosen to maximize performance.
It is implemented by drawing the canvas onto itself with
a negative horizontal offset while the canvas compositing
operation is set to copy. This effectively replaces the leftmost
portion of the canvas with the shifted image in a single
operation. Experimental evaluation revealed this method to
be much faster than using putImageData directly to shift the
image. Others have reported similar performance results1.
To render the new data, standard line drawing functions

are used. To maximize smoothness and continuity, the last
two data points are overdrawn. For example, if there are 7
new data points to draw, the line drawn consists of 9 vertices.
Without this, there could appear to be a gap in the plot de-
pending on the concavity of the plot at the seam. One down-
side of this approach is the possibility of slightly darker areas
where the transparent antialiased pixels overlaps. Another
practical complexity of this approach is the consideration
of layering effects where multiple lines cross. In this im-
plementation, a fixed ordering is used and the source-over
compositing operation is used for the line drawing. This min-
imizes layering artifacts, but is not a perfect solution. A more
robust implementation could consider overlap explicitly and
redraw these stale pixels.

1https://stackoverflow.com/questions/8376534/shift-canvas-contents-to-
the-left

A user can zoom in on the plot by brushing. Double-click
returns to the default zoom. Since the plots contain stream-
ing data, it can be confusing to the user to zoom in on the
leftmost side of the plot, effectively viewing a delayed stream.
To eliminate any confusion, the rightmost axis is locked to 0,
regardless of the brushed zoom. The zoom for this plot is a
semantic zoom; after a zoom, the lines are simply drawn us-
ing the scaled transform. This ensures the line width remains
constant and the lines remain crisp. In this implementation,
the canvas is cleared upon a zoom operation. Future work
could consider maintaining a separate buffer of the data to
redraw the canvas at the new zoom level immediately after
the zoom.

Streaming Spectrogram
Because the spectrogram is a much denser representation of
data, additional optimizations are used. The approach for the
spectrogram rendering is shown in Figure 2 (right). As before,
an svg container is used for the axes and the data is drawn
on canvas. However, with the spectrogram, two canvas ele-
ments are used. Spectrograms are generally computed using
specific, fixed parameters that result in a specific output
resolution. For example, a 1024 point FFT with 512 sample
overlap will produce a 512 element vector every 512 samples.
These parameters are usually set based on properties of the
signal, independent of the desired size or zoom-level of the
spectrogram visualization. Consequently, the approach here
conveniently leverages the canvas elements as the datastore
for the visualization. Each canvas element is sized in pixels

High-performance Web-based Visualizations for Streaming Data CSE 512: Data Visualization, Spring 2019, University of Washington

to match the specified FFT size (divided by two) and history,
but scaled in CSS to match the desired size on screen. As
a result, the image shown by on the canvas may be higher
or lower than the screen resolution. Because the canvases
extend outside the plot area, a CSS clipping mask is applied
to restrict the view.

When the plot is rendered, both canvas elements are shifted
left in screen-space via CSS. As with the line plots, the shift
size is determined based on the buffer size, width of the plot
(in pixels), and history of the plot (in samples). Unlike the
line plots though, there are no copy operations here; the
entire canvas is shifted. This is an extremely fast operation
that is optimized by the browser and requires no pixel ma-
nipulation. The new columns of data are then drawn in the
appropriate canvas columns. When the first canvas is filled,
drawing seamlessly continues onto the second canvas. When
a canvas fully exits the left side of the plot, it is simply moved
over to the far right side and the process continues.
The pixels within a column are computed using a color

scale. This actually happens to be one of the slowest parts of
the rendering. If further performance gains are needed, this
would be a possible area for optimization.

Unlike the line plots, zoom is implemented geometrically.
Upon zoom, the canvases are simply scaled (in screen-space)
to match the brushed region. This has the advantage of be-
ing efficient and requiring no explicit rerendering or scal-
ing. When zoomed in, the pixels in the rightmost (newest)
columns that are vertically out of view are still drawn so
that the image is consistent when zooming back out. Like
the line plots, the zoom is restricted such that the rightmost
column always corresponds to the most recent data.

Supporting Components
Although the two plot components represent the primary
contributions of this project, a few additional components
are implemented to facilitate ease of use and integrations.

App. A App class is provided that wraps a data source and
sets up rendering. It parses incoming data and delegates new
data to the appropriate plot component using prespecified
keys. It also calls the render method of each plot in sync with
the browser’s animation frame, which is usually called at
60Hz.

Data Source - Web Audio. For audio applications, the Web
Audio API provides convenient access to streaming audio
data and analysis. This data source sets up a web audio con-
text and can use either a audio file or the user’s microphone
as an audio source. It then generates spectral data suitable
for plotting on a Spectrogram at regular intervals.

Data Source - Web USB. TheWeb USB API is an experimental
API that allows raw USB access within the browser. This

reference component sets up a connection to a USB device
and begins streaming data from it. This component could be
used for direct access to devices like Arduinos, without any
additional client code.

Data Source - Websocket. Websockets provide a convenient
protocol to communicate between the webpage and arbitrary
software on the PC. This data source connects to a websocket
server and accepts JSON packets that contain a dictionary
that maps new data onto each plot key. This source can be
used to interface with arbitrary code used for traditional
signal processing. A reference demo is provided that uses
Python to interface between a sensor and a web dashboard.

4 RESULTS
Performance Analysis
Because rendering performance is a major motivator of this
project, this section compares the present work to two other
plotting libraries—plot.ly and Vega. These libraries were cho-
sen because of they are modern, full-featured, and commonly
used. Two benchmark tasks were devised.

Line Plot Analysis. For this, only Plot.ly was used for com-
parison. However, this analysis compares Plot.ly’s standard
renderer with the WebGL renderer. For the task, a 2000 pixel
wide line plot was created and N lines were added. The num-
ber of lines were varied from 10 to 40, with a few larger
points tested on the present implementation. The history
was set to 2000 points. For the Plot.ly implementation, the
extendTracesmethod was used to add new data to the plot.
The render time was computing using the Chrome perfor-
mance analysis tool. These times were used to computed
frames per second. For the line plots from this project, the
FPS was capped at 60Hz, even when the rendering time was
much less.
Figure 4 shows the result of this analysis. This should be

interpreted as an expected frame rate for each scenario. For
10-40 lines, the line plots from this project rendered in under
1.6ms each frame. The number of lines was increased to un-
reasonably high level to stress test the plot and it maintained
60Hz performance until around 1000 lines were added. The
Plot.ly implementations dropped under 30Hz between 10
and 20 lines. Surprisingly, even the WebGL implementation
struggled under this load.

SpectrogramAnalysis. This analysis compares this work, Plot.ly
and Vega. A square spectrogram of size 128 to 4096 was con-
structed. Random data was added to the spectrogram each
frame. Figure 5 shows the result of this analysis. Neither
Plot.ly nor Vega could handle a 128x128 spectrogram at in-
teractive frame rates. The present work supported 60Hz all
the way up to 4096x4096 images.

CSE 512: Data Visualization, Spring 2019, University of Washington Whitmire

Figure 3: Example applications showing live audio spectrograms, high-density signals, and a real-world sensor dashboard

0

10

20

30

40

50

60

70

10 20 30 40 500 1000

F
ra

m
e

 R
a

te
 (

fp
s)

Lines

Line Chart Performance

This work Plot.ly (WebGL) Plot.ly (SVG)

Figure 4: Benchmark performance for line plots

0

10

20

30

40

50

60

70

128 256 512 1024 2048 4096

F
ra

m
e

 R
a

te
 (

fp
s)

Spectrogram Size (width/height)

Spectrogram Performance

This work Plot.ly Vega

Figure 5: Benchmark performance for spectrogram

Example Use Cases
To demonstrate the functionality of these components, a
number of examples are presented in Figure 3. On the left,
the Web Audio datasource plots a streaming spectrogram

from live microphone data. In the center, a dashboard demon-
strates composing multiple line plots in one page. The right-
most figure shows a real-world use case with a sensor device
that produces a reading from 9 sensors at 500Hz. A Python
process reads from the device and performs a number of
filtering and analysis steps. It initializes a WebSocket server
and streams data to the web client. The raw data is plotting
in the lower left and each signal’s spectrogram is plotted at
the top. A few derived signals are plotted in the lower right.
This dashboard has replaced a Matplotlib-based visualization
for a real-time sensor dashboard for an ongoing research
project. It supports more plots and consumes significantly
fewer system resources.

5 DISCUSSION
This work has presented two visualization components that
have been optimized for real-time streaming signals. This
enables the construction of sensor dashboards or other visu-
alizations without having to worry about performance. By
cleanly decoupling the rendering from the signal processing,
it frees the designer to focus on exploratory signal process-
ing. The use of canvas elements powers much of the system
performance and allows the system to render just what is
needed.

6 FUTUREWORK
There a number of areas of potential refinement for this work.
The bulk of the effort for this project focused on rendering,
but additional work is needed for API design around elements
like legends and axis scales. Future work should consider
whether this makes more sense as a rendering method within
an existing visualization package or a lightweight standalone
contribution. Investigation of WebGL techniques would be
another promising route. Care must be taken to balance
expected performance gains with the complexity and rigidity
such an approach would require.

REFERENCES
[1] [n.d.]. Arduino. https://www.arduino.cc/.
[2] [n.d.]. Bokeh. https://github.com/bokeh/bokeh.

https://www.arduino.cc/
https://github.com/bokeh/bokeh

High-performance Web-based Visualizations for Streaming Data CSE 512: Data Visualization, Spring 2019, University of Washington

[3] [n.d.]. Cubism.js. https://square.github.io/cubism/.
[4] [n.d.]. Matplotlib. https://matplotlib.org/.
[5] [n.d.]. plotly.js. https://plot.ly/javascript/.
[6] Ben Fry, Casey Reas, and Others. [n.d.]. Processing. https://processing.

org/.
[7] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and

Jeffrey Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2017). http:

//idl.cs.washington.edu/papers/vega-lite
[8] Arvind Satyanarayan, Kanit Wongsuphasawat, and Jeffrey Heer. 2014.

Declarative Interaction Design for Data Visualization. In ACM User
Interface Software & Technology (UIST). http://idl.cs.washington.edu/
papers/reactive-vega

[9] Eric Whitmire. 2017. PyRealtime. https://github.com/ewhitmire/
pyrealtime.

https://square.github.io/cubism/
https://matplotlib.org/
https://plot.ly/javascript/
https://processing.org/
https://processing.org/
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/reactive-vega
http://idl.cs.washington.edu/papers/reactive-vega
https://github.com/ewhitmire/pyrealtime
https://github.com/ewhitmire/pyrealtime

	1 Introduction
	2 Related Work
	3 Methods
	Streaming Line Plots
	Streaming Spectrogram
	Supporting Components

	4 Results
	Performance Analysis
	Example Use Cases

	5 Discussion
	6 Future Work
	References

