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Abstract─Determining an individual’s cause of death is an important concern, particularly in areas where death commonly 
occurs outside of hospitals or healthcare facilities. As a result, various algorithms have been developed to predict these 
causes based on medical information, including symptoms the patient exhibits. Verbal autopsy (VA), a survey with a relative 
or close contact, is used to identify the leading cause of death in populations without adequate vital registration systems. VA 
algorithms leverage symptom-cause information (SCI) to associate symptoms with causes of death (CoD). However, these 
algorithms vary in accuracy, which can be improved by grouping CoD. In collaboration with Tyler McCormick (UW 
Statistics and Sociology Departments), we created interactive and dynamic visualizations that depict associations between 
SCI and CoD based on these algorithms to help policymakers and stakeholders in low resource areas visualize uncertainty in 
predictive models. Furthermore, we designed these visualizations to assist in understanding the cause-symptom relationships 
and algorithm performances. 
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1    INTRODUCTION
Verbal autopsy (VA) is an important tool to measure cause of 
death in populations without complete medical certification for 
cause of death (CoD). A VA gathers data from the relative(s) of 
the recently deceased or close contain, and contains information 
such as symptoms and circumstances surrounding the death. This 
is a common situation in many countries and as a result, building 
algorithms that can predict the cause of death from a VA is 
essential to improve healthcare. However, there are copious 
amounts of data indicating relationships between cause of death 
and symptoms, and different VA algorithms that can predict 
varying outcomes for a single patient. These algorithms depend on 
three distinct components: (1) VA data, (2) symptom-cause 
information (SCI), and (3) an algorithmic or probabilistic model 
that merge the previous two components to assign a likely cause 
of death [1].  

There are many VA algorithms currently in use, each with 
varying levels of accuracy and performance, including InSilico 
VA, NBC, and InterVA [1, 2]. These algorithms learn SCI through 
the use of labelled training data where a cause of death has been 
confirmed with both VA data and an independent expert [1, 2]. In 
reality, however, training data are hard to obtain and fair 
comparisons amongst algorithms can only be assessed when the 
same SCI is fixed across all algorithms.  

Clark et al. (2018) explored and compared the different VA 
algorithms across various sites. They found that the performance 
of VA algorithms depends heavily on the SCI. Based on VAs in 
five African and Asian countries, the InterVA algorithm 
(specifically InterVA-4) had an 83% concordance correlation 
coefficient for determining cause-specific mortality fractions, 
which increased to 97% when AIDS and pulmonary TB deaths 
were joined [3], demonstrating that grouping can be a successful 
method of increasing correlation.  

Here, we aimed to create interactive and dynamic 
visualizations that efficiently depicts 1) the relationship between 
true CoD and symptoms and 2) the varying performance among 
VA algorithms across various regions and groupings. We targeted 
our visualizations to be used by technical staff or policy-makers in 
low resource settings who may or may not have formal training. 
 
2   METHODS 
We obtained data from the Population Health Metrics Research 
Consortium (PHMRC), which contains 7,841 adult deaths across 

six distinct locations: (1) Andhra Pradesh, India; (2) Bohol, 
Philippines; (3) Dar es Salaam, Tanzania; (4) Mexico City, 
Mexico; (5) Pemba Island, Tanzania; and (6) Uttar Pradesh, India 
[4]. All recorded deaths have VA data and expert-confirmed CoD. 
The confirmed CoD are grouped in three levels consisting of 34, 
46, and 55 causes.  

Within each group, there are two types of data, (1) symptom-
causes that indicate which symptoms are related to which CoD for 
each patient and (2) probabilities for each CoD are determined by 
three different algorithms. For the first type of data, we calculated 
the frequency between a cause and symptom and divided by the 
total number of relationships. These aggregated relationships are 
presented in Figures 1, 2, and 3. For the second type of data, we 
averaged probabilities of each cause for each algorithm and 
present in Figure 4. 

To first explore and understand the relationships between 
causes and symptoms, we created a force directed network graph. 
This graph simply encodes causes and symptoms by node color 
and encodes the relationship between the nodes through line 
thickness, where a thicker link indicates a higher association and a 
thinner link indicates a lower association. The network approach 
allows users to quickly understand the relationship between 
symptoms and true CoD at a high-level. This approach is ideal for 
policy-makers who want to get an overview of the data while still 
being informed of the relations. While the network graph was 
informative, it lacked a structure to easily understand the data. To 
address this issue, we developed a parallel coordinate system. 
With this graph, we now have structure, where causes are on the 
left y-axis and symptoms are on the right y-axis with relationships 
represented as lines. We can easily compare different true CoD 
and symptoms and the associations between the two. With the 
parallel coordinates graph, higher trained policy-makers will be 
able to instantly see existing relationships between true CoD and 
symptoms without the need for further hovering or clicking. 
Though the parallel coordinates graph was more clear in the 
relationships between CoD and symptoms, some users may want 
to also visualize the uncertainty in some relationships. To address 
this desire, we built a heatmap to allow more trained users to easily 
observe each cause and symptom along the y- and x-axes, 
respectively, and at their intersection, view the brightness (i.e., 
lightness) of the red hue as the level of association. Red and black 
were used throughout the first three visuals as both colors are often 
associated with mortality. 

Additionally, we had data about the three aforementioned VA 
algorithms and their probabilities. We created an interactive bar 
chart that allows users to select the desired grouping to visualize 
and to hover over the bars to get more information. The graph was 
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simply designed to compare how different algorithms link 
symptoms to cause of death, and a triple bar chart allows all three 
algorithms to be simultaneously compared. This visualization 
shows the average probability of an observed set of symptom-
outcome pairings to be matched to a cause of death by a given 
algorithm. This figure serves as an indirect comparison of the 
performance of different algorithms. Therefore, the height of 
different bars can be compared for an individual cause of death. 
 
3    RESULTS 
 
3.1    Network Map 
 

 
Fig. 1. A view of the force directed network with a cause of death 
and its associations highlighted.  
 
The force directed network graph encodes true CoD and symptoms 
through a two-toned node coloring system, where true CoD are 
black and symptoms are red (Fig. 1). The graph is highly 
interactive and designed for high-level exploration. To explore, 
one can click on a node of interest, hover over the nodes or links 
to get various details, or utilize the dropdown on the right-hand 
side to get a clickable list of true CoD that are displayed in the 
network. Exploration tips are also included on the right to guide 
the user in using the graph. The graph is updated every time the 
dataset (location and grouping) is changed as well as when the user 
selects a specific node by clicking directly in the graph or through 
the dropdown. The nodes are dynamic and can be moved 
anywhere allowing the user to customize the shape of the graph. 
Furthermore, because there are a lot of nodes and links, the user 
can also zoom in and out to help assist with accurate selection and 
hover.  
 

 
Fig. 2. A partial view of the parallel coordinate system visual with a 
highlighted cause of death.  
 
3.2    Parallel Coordinate System 
 
The parallel coordinate system describes the relationship between  

CoD and symptoms (Fig. 2). This graph uses vertical axes to 
encode the CoDs and symptoms with lines to encode their 
associations. This interactive graph allows users to better 
understand the data by exploring the differences among CoDs and 
symptoms. Users can click on a CoD or symptom and the graph 
will highlight all relevant associations. In addition, users can hover 
over a specific line for a tooltip to pop up that provides a numerical 
value that represents the strength of the CoD-symptom association 
of interest. As mentioned in 3.1, the parallel coordinate system 
also updates every time the dataset (location and grouping) is 
changed. 
 
3.3   Heatmap 
 
The heatmap (Fig. 3) is able to simultaneously visualize all 
connections between CoD and symptoms, as well as the strength 
of their association. Users can see potential connections and 
strength of connection. Hue brightness is used on a continuous 
gradient from very pale red (meaning almost zero) to dark red (1), 
but if they would like more information, a tooltip provides the 
exact value. Due to the large number of symptoms, the graph must 
be very wide. Therefore, the y-axis moves when the user scrolls to 
the right, so it continues to be readable. Users are also able to click 
each square to turn on a highlight feature to enhance readability. 
Unfortunately, the moving y-axis means that the axis labels are not 
clickable.  
 

 
Fig. 3. A partial view of the heatmap with a highlighted row and 
column.  
 
3.4    Outcome Probability Chart 
 
Figure 4 shows a bar chart of each algorithm’s average probability 
of predicting the correct CoD. The probabilities of all symptoms-
CoD observations within a cause grouping (ie. 34, 55, 65) were 
grouped based on the CoD gold label. Within each CoD gold label 
group, the average probability for the correct CoD was calculated 
for each algorithm. Probabilities close to 1 indicates the algorithm 
predicted the correct CoD with confidence. Each color bar 
corresponds to one of the three algorithms used; blue for InterVa, 
yellow for NBC and red for InSilicoVA. Different outcome 
groupings can be selected using the dropdown menu. 

This figure was designed to compare how different 
algorithms link symptoms to cause of death, and a triple bar chart 
allows all three algorithms to be simultaneously compared. The 
relative performance of different algorithms can be observed by 
comparing the height of different bars for an individual cause of 
death. For example, when looking at Figure 4 with the default 34 
grouping, the bars corresponding to Breast Cancer have similar 
heights, indicating a similar performance (0.65-0.72) of all three 
algorithms. In contrast, all three algorithms performed poorly at 
predicting Asthma (0.07-0.15). These results indicate that these 



 

algorithms vary in performance across CoDs. Follow-up work 
could involve experimenting with different algorithms, such as 
neural networks to rescue these difficult to predict CoDs. 

 

 
Fig. 4. Bar Graph 
 
3.5    Case Study 
 
Take, for example, a user interested in Acute Myocardial 
Infarction (AMI) in Andhra Pradesh, India with 34 possible 
causes. This user is able to first select the location and grouping 
from the top menu bar, which will correspond to the first three 
figures (and scroll with the figures, in case the user wishes to look 
at other locations/groupings). With the first visual, they could 
search for the point individually, or they are able to easily select 
AMI from the right hand menu to see that it has many associated 
symptoms with varying levels of strength. The user can hover for 
more information over highlighted nodes and links. However, if 
they wished to view all symptoms simultaneously, the user can 
then scroll down to the second visual. By clicking on the AMI label 
on the right y-axis, all the connections are highlighted, and the user 
can view all symptom labels at once. If the user wishes to 
simultaneously view all the connections and know the association 
strengths, then they can scroll to Figure 3 and click on a square 
associated with AMI. As seen in the previous two graphs, many 
connections exist, but at the same time, many of those connections 
are weak. Scrolling to the right, reveals that it is symptoms such 
as Trouble Breathing and Chest Pain Month before Dying which 
are most associated with AMI. With the bottom graph, the user 
selects Outcome Grouping: 34 and observes that the average 
probability value for predicting AMI based on symptoms is low 
and quite different between the three algorithms: NBC - 0.13, 
InterVA - 0.32, and InSilicoVA - 0.42. One could theorize that 
because AMI is associated with 71 symptoms, it may share enough 
symptoms with other serious causes that makes it difficult to 
predict with confidence. For example, AMI and AIDS share 69 
symptoms. In addition, symptoms that are highly associated with 
AMI are also associated with other causes, such as the symptom 
Continuous Trouble Breathing is also highly associated to the 
Cancer-related CoDs. This may make it difficult for the algorithms 
to find features that are strongly associated to AMI specifically. 
 
4    DISCUSSION 
 
Our visualization tool is used primarily for exploring the data and 
comparing the performance of different CoD prediction 
algorithms. Our audience spent time exploring our Figures 1-3 to 
understand how specific symptoms and CoDs relate to each other. 
Our visualization tool allowed users to discover new relationships 
that could not have been observed with the original table format of 
the data. In addition, Figure 4 showed our audience that 
performance across algorithms was not consistent, which 

prompted a discussion on what could be done to improve the 
results, which included applying specific algorithms, such as 
neural networks. 
 
4.1    Future Work 
 
In the future, to assess our visualizations we could interview policy 
makers and stakeholders from each region to understand what 
details and information they want to see. Furthermore, we can 
obtain feedback from said policy makers and stakeholders on 
usability and design. Once we obtain their feedback, we would 
iterate our approach and design. Based on the feedback, we could 
potentially customize visualizations to each region for optimal 
dissemination of information. 
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